Differential glycosylation produces heterogeneity in elevated esterases associated with insecticide resistance in the brown planthopper Nilaparvata lugens Stål.

نویسندگان

  • G J Small
  • J Hemingway
چکیده

The major insecticide resistance mechanism in the brown planthopper Nilaparvata lugens involves overproduction of esterases. Esterases purified from a resistant strain appeared as a ladder of bands on isoelectric focussing (IEF) gels from pI 4.7 to 5.0. Two-dimensional electrophoresis showed that isozymes ranged in size from 66 to 68 kDa with those of lower pI being apparently smaller. All isozymes detected by two-dimensional electrophoresis were glycosylated. N-glycosidase A reduced the number of isozymes on IEF to two, with increased pI and an increased molecular weight of 69 kDa. No O-linked glycans were detected. Deglycosylation had no effect on esterase activity, hence glycosylation is not involved in active site conformation. As N-glycosidase F completely deglycosylated the esterases, none of the glycans has an alpha1,3-bound core fucose. Reactivity with the lectins GNA, MAA and DSA, combined with differential cleavage of N-linked glycans with endoglycosidases F1 and F2, indicated that terminally linked mannose is present in high mannose and/or hybrid type glycans and that terminally linked sialic acid and galactose-beta(1-4)-N-acetylglucosamine are present in biantennary complexes. Neuraminidase treatment had the same effect on pI of isozymes as complete deglycosylation. Therefore, the majority of the heterogeneity of elevated esterases on IEF is due to differential attachment of sialic acid to glycans of the two proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Susceptibility to neonicotinoids and risk of resistance development in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae).

BACKGROUND In recent years, outbreaks of the brown planthopper, Nilaparvata lugens (Stål), have occurred more frequently in China. The objective of this study was to determine the susceptibility of N. lugens to neonicotinoids and other insecticides in major rice production areas in China. RESULTS Results indicated that substantial variations in the susceptibility to different insecticides exi...

متن کامل

Inheritance mode and realized heritability of resistance to imidacloprid in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae).

BACKGROUND The brown planthopper, Nilaparvata lugens (Stål), is a serious pest that causes enormous losses to the rice crop in Asia. The genetic basis of imidacloprid resistance was investigated in N. lugens. RESULTS The resistant strain, selected for imidacloprid resistance from a field population of N. lugens collected from Nanjing, Jiangsu Province, China, showed a 964-fold resistance comp...

متن کامل

Development and use of EST-SSR markers for assessing genetic diversity in the brown planthopper (Nilaparvata lugens Stål).

To assess genetic diversity in populations of the brown planthopper (Nilaparvata lugens Stål) (Homoptera: Delphacidae), we have developed and applied microsatellite, or simple sequence repeat (SSR), markers from expressed sequence tags (ESTs). We found that the brown planthopper clusters of ESTs were rich in SSRs with unique frequencies and distributions of SSR motifs. Three hundred and fifty-o...

متن کامل

Outbreaks of the Brown Planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: Immigration or Local Reproduction?

An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N....

متن کامل

Purification, molecular cloning and heterologous expression of a glutathione S-transferase involved in insecticide resistance from the rice brown planthopper, Nilaparvata lugens.

A novel glutathione S-transferase (GST)-based pyrethroid resistance mechanism was recently identified in Nilaparvata lugens [Vontas, Small and Hemingway (2001) Biochem. J. 357, 65-72]. To determine the nature of GSTs involved in conferring this resistance, the GSTs from resistant and susceptible strains of N. lugens were partially purified by anion exchange and affinity chromatography. The majo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Insect biochemistry and molecular biology

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2000